Home
FAQ
Membership
Login
Register
Contact us
The Neighbourhood
Image gallery for:
Planar example showing the solution trajectory passing through Ωη generating a tubular neighborhood
Planar example showing the solution trajectory passing through Ωη, generating a tubular neighborhood
Advertisement
^^^^^^Whymsical
Contraction of the distance induced The Finsler-Lyapunov function assigns a positive value to each
Optimal adaptive robust H∞ H2 sliding mode
Stabilizing control design using Weak control Lyapunov function and strict boolean nonsmooth control
Optimal adaptive robust H∞ H2 sliding mode
Minkowski sums
Optimal adaptive robust H∞ H2 sliding mode
Advertisement
if vol(Ω∗) ≤ ϵ for Ω∗ of Ω , then ∃ T ≥ 0 so that for any x0 ∈ D the solution stays in the domain D
Optimal adaptive robust H∞ H2 sliding mode
VD
For any (x,ζ1) ∈ X ×Z1 satisfying V1(x,ζ1) ≤ ε1, then V0(x,Θ(ζ1)) ≤ ε0
Optimal adaptive robust H∞ H2 sliding mode
Sensitivity function |S(jw)| Nyquist curve of the loop gain L(jw) with the critical -1 point
Optimal adaptive robust H∞ H2 sliding mode
Unmodified filter solution generates an estimate that converges to the true equivariant errorstate e
Optimal adaptive robust H∞ H2 sliding mode
111Proyectos que debo intentar
Lyapunov theory and contraction theory
Optimal adaptive robust H∞ H2 sliding mode
Advertisement
Advertisement
Advertisement
Estimation of V0 condition ∃ c0 gt c0 gt 0 and a cont function ω Rn0×Rn1 →R≥0 ω(Θ(ζ1),ζ1) = 0 ∀ ζ1
Optimal adaptive robust H∞ H2 sliding mode