Introduction:We will identify anomalous products on the production line by using measurements from testing stations and deep learning models. Anomalous products are not failures, these anomalies are products close to the measurement limits, so we can display warnings before the process starts to make failed products and in this way the stations get maintenance. Before starting we need the next software installed and working:- R language installed.- All the R packages mentioned in the R sources.- Testing stations data, I suggest to go station by station.- H2O open source framework.- Java 8 ( For H2O ). Open JDK: https://github.com/ojdkbuild/contrib_jdk8u-ci/releases- R studio.Get your data. About the data: Since I cannot use my real data, for this article I am using SECOM Data Set from UCI Machine Learning Repository How many records?: Training data set - In my real project, I use 100 thousand test passed records, it is around a month of production data. Testing data set - I use the last 24 hours of testing station data. Let's the fun begin Deep Learning Model Creation And Testing. # Load librarieslibrary( h2o ) h2o.init( nthreads = -1, max_mem_size = "5G", port = 6666 ) h2o.removeAll() ## Removes the data from the h2o cluster in preparation for our final model.# Reading SECOM data fileallData = read.csv( "secom.data", sep = " ", header = FALSE, encoding = "UTF-8" )# fixing the data set, there are a lot of NaN recordsif( dim(na.omit(allData))[1] == 0 ){ for( colNum in 1:dim( allData )[2] ){ # Get valid values from the actual column values ValidColumnValues = allData[,colNum][!is.nan( allData[, colNum] )] # Check each value in the actual active column. for( rowNum in 1:dim( allData )[1] ){ cat( "Processing row:", rowNum, ", Column:", colNum, "Data:", allData[rowNum, colNum], "\n" ) if( is.nan( allData[rowNum, colNum] ) ) { # Assign random valid value to our row,column with NA value getValue = ValidColumnValues[ floor( runif(1, min = 1, max = length( ValidColumnValues ) ) ) ] allData[rowNum, colNum] = getValue } } }}# spliting all data, the fiirst 90% for training and the rest 10% for testing our model.trainingData = allData[1:floor(dim(allData)[1]*.9),]testingData = allData[(floor(dim(allData)[1]*.9)+1):dim(allData)[1],]# Convert the training dataset to H2O format.trainingData_hex = as.h2o( trainingData, destination_frame = "train_hex" )# Set the input variablesfeatureNames = colnames(trainingData_hex)# Creating the first model version.trainingModel = h2o.deeplearning( x = featureNames , training_frame = trainingData_hex , model_id = "Station1DeepLearningModel" , activation = "Tanh" , autoencoder = TRUE , reproducible = TRUE , l1 = 1e-5 , ignore_const_cols = FALSE , seed = 1234 , hidden = c( 400, 200, 400 ), epochs = 50 )# Getting the anomalies from training data to set the min MSE( Mean Squared Error )# value before setting a record as anomallytrainMSE = as.data.frame( h2o.anomaly( trainingModel , trainingData_hex , per_feature = FALSE ) )# Check the first 30 descendent sorted trainMSE records to see our outliershead( sort( trainMSE$Reconstruction.MSE , decreasing = TRUE ), 30)# 0.020288603 0.017976305 0.012772556 0.011556780 0.010143009 0.009524983 0.007363854 # 0.005889714 0.005604329 0.005189614[11] 0.005185285 0.005118595 0.004639442 0.004497609# 0.004438342 0.004419993 0.004298936 0.003961503 0.003651326 0.003426971 0.003367108# 0.003169319 0.002901914 0.002852006 0.002772110 0.002765924 0.002754586 0.002748887 # 0.002619872 0.002474702# Ploting errors of reconstructing our training data, to have a graphical view# of our data reconstruction errorsplot( sort( trainMSE$Reconstruction.MSE ), main = 'Reconstruction Error', ylab = "MSE Value." ) # Seeing the chart and the first 30 decresing sorted MSE records, we can decide .01# as our min MSE before setting a record as anomally, because we see Just a few# records with two decimals greater than zero and we can set those as outliers.# This value is something you must decide for your data.# Updating trainingData data set with reconstruction error < .01trainingDataNew = trainingData[ trainMSE$Reconstruction.MSE < .01, ]h2o.removeAll() ## Remove the data from the h2o cluster in preparation for our final model.# Convert our new training data frame to H2O format.trainingDataNew_hex = as.h2o( trainingDataNew, destination_frame = "train_hex" )# Creating the final model.trainingModelNew = h2o.deeplearning( x = featureNames , training_frame = trainingDataNew_hex , model_id = "Station1DeepLearningModel" , activation = "Tanh" , autoencoder = TRUE , reproducible = TRUE , l1 = 1e-5 , ignore_const_cols = FALSE , seed = 1234 , hidden = c( 400, 200, 400 ), epochs = 50 )################################# Check our testing data for anomalies.################################# Convert our testing data frame to H2O format.testingDataH2O = as.h2o( testingData, destination_frame = "test_hex" )# Getting anomalies found in testing data.testMSE = as.data.frame( h2o.anomaly( trainingModelNew , testingDataH2O , per_feature = FALSE ) )# Binding our data.testingData = cbind( MSE = testMSE$Reconstruction.MSE , testingData )anomalies = testingData[ testingData$MSE >= .01, ]if( dim(anomalies)[1] ){ cat( "Anomalies detected in the sample data, station needs maintenance." )}Here is the code on github: https://github.com/LaranIkal/ProductAnomaliesDetection Enjoy it!!!. Carlos Kassab https://www.linkedin.com/in/carlos-kassab-48b40743/ More information about R: https://www.r-bloggers.com