I frequently see conversations where terms like LLMs, RAG, AI Agents, and Agentic AI are used interchangeably, even though they represent fundamentally different layers of capability. This visual guides explain how these four layers relate—not as competing technologies, but as an evolving intelligence architecture. Here’s a deeper look: 1. 𝗟𝗟𝗠 (𝗟𝗮𝗿𝗴𝗲 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲 𝗠𝗼𝗱𝗲𝗹) This is the foundation. Models like GPT, Claude, and Gemini are trained on vast corpora of text to perform a wide array of tasks: – Text generation – Instruction following – Chain-of-thought reasoning – Few-shot/zero-shot learning – Embedding and token generation However, LLMs are inherently limited to the knowledge encoded during training and struggle with grounding, real-time updates, or long-term memory. 2. 𝗥𝗔𝗚 (𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹-𝗔𝘂𝗴𝗺𝗲𝗻𝘁𝗲𝗱 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻) RAG bridges the gap between static model knowledge and dynamic external information. By integrating techniques such as: – Vector search – Embedding-based similarity scoring – Document chunking – Hybrid retrieval (dense + sparse) – Source attribution – Context injection …RAG enhances the quality and factuality of responses. It enables models to “recall” information they were never trained on, and grounds answers in external sources—critical for enterprise-grade applications. 3. 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 RAG is still a passive architecture—it retrieves and generates. AI Agents go a step further: they act. Agents perform tasks, execute code, call APIs, manage state, and iterate via feedback loops. They introduce key capabilities such as: – Planning and task decomposition – Execution pipelines – Long- and short-term memory integration – File access and API interaction – Use of frameworks like ReAct, LangChain Agents, AutoGen, and CrewAI This is where LLMs become active participants in workflows rather than just passive responders. 4. 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 This is the most advanced layer—where we go beyond a single autonomous agent to multi-agent systems with role-specific behavior, memory sharing, and inter-agent communication. Core concepts include: – Multi-agent collaboration and task delegation – Modular role assignment and hierarchy – Goal-directed planning and lifecycle management – Protocols like MCP (Anthropic’s Model Context Protocol) and A2A (Google’s Agent-to-Agent) – Long-term memory synchronization and feedback-based evolution Agentic AI is what enables truly autonomous, adaptive, and collaborative intelligence across distributed systems. Whether you’re building enterprise copilots, AI-powered ETL systems, or autonomous task orchestration tools, knowing what each layer offers—and where it falls short—will determine whether your AI system scales or breaks. If you found this helpful, share it with your team or network. If there’s something important you think I missed, feel free to comment or message me—I’d be happy to include it in the next iteration. | 106 comments on LinkedIn